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Abstract
Low Reynolds number direct simulations of large populations of hydrodynamically interacting
swimming particles confined between planar walls are performed. The results of simulations
are compared with a theory that describes dilute suspensions of swimmers. The theory yields
scalings with concentration for diffusivities and velocity fluctuations as well as a prediction of
the fluid velocity spatial autocorrelation function. Even for uncorrelated swimmers, the theory
predicts anticorrelations between nearby fluid elements that correspond to vortex-like swirling
motions in the fluid with length scale set by the size of a swimmer and the slit height. Very
similar results arise from the full simulations indicating either that correlated motion of the
swimmers is not significant at the concentrations considered or that the fluid phase
autocorrelation is not a sensitive measure of the correlated motion. This result is in stark
contrast with results from unconfined systems, for which the fluid autocorrelation captures
large-scale collective fluid structures. The additional length scale (screening length) introduced
by the confinement seems to prevent these large-scale structures from forming.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Experimental observations of suspensions of swimming micro-
organisms illustrate a number of fascinating phenomena that
are still poorly understood. Correlations of the swimmers
result in jets and swirling motions on scales larger than that of a
single organism [1, 2]. The organisms also form local nematic
ordering though they have no global nematic behavior [3].
The collective behavior leads to swimmer velocities larger than
that of an isolated organism [4] and enhanced transport in the
fluid [5].

There are many open questions regarding these important
observations both in terms of what leads to the phenomena
and their biological significance. Some models consider
‘local’ interactions between nearby organisms within a finite
range, and how those can lead to large-scale collective
behavior. These interactions may take the form of ad hoc
rules [6] or direct steric interactions between the swimmers [7].
Other models consider long-ranged hydrodynamic interactions

between swimmers, which decay as r−2 in an unbounded
domain [8–12]. The relative importance of these phenomena
is still not fully understood.

Many experiments observing these phenomena have been
performed in droplets or thin films, but the influence of
confinement on the observations is not clear. Confinement
sterically hinders the organisms and also affects the
hydrodynamic interactions, both between the organisms and
between the organism and the boundary. The boundaries
may also play a role in transport of nutrients, which may, in
turn, affect motion of the organisms. For example, oxygen
levels may be different near surfaces, altering the motion
of the organisms. For droplets or films, the rigidity of the
surface from secreted molecules may affect the fluid boundary
condition and dynamics of the organisms [4, 3].

Most experiments mentioned above have concentrated
on two types of bacteria, E. coli and B. subtilis. Both
organisms use flagella to propel themselves forward through
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the fluid. However, other types of organisms propel through
a fluid by other mechanisms, such as pulling themselves
forward from the front [13]. What role the propulsion
method plays on the collective behavior has not been clarified,
although computational and theoretical evidence suggests
that organisms pushed from behind display more complex
collective behavior than those pulled from the front [14, 12].
In general, what biological significance the above phenomena
play in the function of the micro-organisms remains unclear.

In this article we focus on the role that confinement
plays in the collective behavior. The only prior publication
using computational models to investigate how hydrodynamic
interactions affect the collective behavior of swimming micro-
organisms in confined environments is by Hernández et al
[8]. They showed that hydrodynamic interactions were
sufficient to produce many qualitative phenomena seen in
experiments, including increased transport and swirls in the
fluid. We focus on confined systems not only because many
experiments have been done in confined environments, but also
to draw comparisons with unconfined dynamics. Simulations
in three-dimensional periodic domains have shown changes
in dynamics with the size of the domain [12] that are
thought to arise because of long-range structures that fill the
entire domain. Some experiments have attempted to measure
unconfined dynamics by examining the response far away from
the confining walls [15–17]. However, because of the long-
ranged nature of hydrodynamics, the point at which confined
systems with very large gaps reduces to an unconfined system
is not obvious.

We examine the behavior at different levels of confinement
and at different concentrations ranging from the dilute limit
into the semidilute regime. However the concentration is
still low enough that we do not expect the steric interactions
between the organisms to be the dominant interaction and lead
to nematic-like structures. Instead we expect the long-ranged
hydrodynamic interactions to play an important role. The
confinement boundaries alter these hydrodynamic interactions.
The walls also induce a non-uniform concentration profile
within the domain, with the organisms concentrating at the
walls. Finally, the walls introduce a new length scale which
screens hydrodynamics and alters flow structures over larger
length scales. We will show in this article how the dynamics
depend on confinement and how they compare with theoretical
predictions.

2. Swimmer model

Consider a suspension of N neutrally buoyant rod-like
swimmers confined between two planar walls. Directions
x1 and x2 are periodic of side length L, and the walls are
separated in the x3-direction by a distance 2H . Each swimmer
has a characteristic length �, a characteristic width w, and in
isolation would move in a straight line with a speed vis. It is
assumed that the Reynolds number, Re = vis H/ν � 1, where
ν is the fluid kinematic viscosity, in which case the fluid motion
is governed by the Stokes equation. To allow treatment of large
populations (>103 swimmers) over long times, a very simple

Figure 1. Illustration of a pushing organism, our swimmer model,
and the fluid disturbance they cause in an unbounded domain. Our
model shows the hydrodynamic radius of the beads and the
ellipsoidal excluded volume. The double-arrow signifies the phantom
flagellum force acting on the bead and an opposite force acting on
the fluid. Both forces act at the center of the first bead. The blue lines
represent streamlines of the axisymmetric fluid disturbance. A puller
would produce the same streamlines, but with the direction of the
velocities reversed.

model of each swimmer is adopted, following our previous
work [8, 12].

Each self-propelled particle is modeled as two beads
connected by a stiff spring with equilibrium length � as shown
in figure 1. The unit vector pointing along the swimmer axis
from bead 1 to bead 2 is denoted n. Propulsion is provided by
a ‘phantom flagellum’ that we do not treat explicitly, but only
through its effect on the swimmer body and the fluid. The bead
which is connected to the flagellum, denoted bead 1, feels a
force ff exerted on it. However, the flagellum also exerts a
force −ff on the fluid. This force on the fluid occurs at the
position of bead 1. With this model we can consider ‘pushers’
or ‘pullers’ depending on whether ff is parallel or anti-parallel
to n, respectively. A pusher sends fluid away from it fore
and aft, with fluid moving toward its ‘waist’, and vice versa
for a puller. Whether a real swimmer is a pusher or a puller
depends on the specific mechanism of locomotion (cf [13])—
a cell whose flagella propel it forward predominantly from
behind would be a pusher [8, 12]. We will focus primarily
on pushers in this article, though some results with pullers are
presented.

To measure the concentration of the swimmers we define
an effective volume fraction φe = πN�3/(12L2 H )—this
would be the true volume fraction if the swimmers were
spheres of diameter �. In the present geometry, swimmers
in dilute systems form layers near the two walls. Therefore,
we find it convenient to also define an effective area fraction
if all swimmers resided in the layers. It is defined as ψe =
CπN�2/(4L2), where the constant C = 1/2 if the gap is large
enough to allow for a layer at each wall (2H > 2w), or C = 1
for extreme confinements, e.g. monolayers.

The force in the ‘stiff’ connector between the beads
follows a finitely extensible nonlinear elastic (FENE) spring
model with a non-zero equilibrium length equal to the
swimmer size � [18]:

fc
ν,k = hQν

1 − �/|Qν|
1 − [(|Qν| − �)/(�m − �)]2

, (1)
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where h is the spring constant, Qν is the connector vector
from bead 1 to bead 2 on swimmer ν, and �m is the swimmer
maximum size. With this spring law, the swimmer will
shrink slightly for a pushing flagellum, or expand for a pulling
one. The values of h and �m are chosen so that the spring
approximates a rigid constraint while still allowing timesteps
that are not prohibitively small. For the results presented
here, h = ff/(0.1�) and �m = 1.15�. The swimmers also
interact through an excluded volume potential, which is taken
as the repulsive portion of the Gay–Berne potential [19]; this
potential is widely used in molecular simulations to model
steric repulsions between rod-like objects. The size and aspect
ratio of the excluded volume potential to related to the size
of the swimmer � and the hydrodynamic radius of a bead a
as illustrated in figure 1. The width of the excluded volume
is taken as w = 2a and the length as � + 2a. This means
that the excluded volume restricts bead positions such that the
hydrodynamic radii do not overlap. It also gives an aspect ratio
of γ = 1 + �/(2a). The model presented here has � = 3a, and
therefore an aspect ratio of γ = 2.5.

The motion of the swimmers is determined by the force
balance (neglecting inertia because of the small size of a micro-
organism) for each bead (k = 1, 2) of a swimmer ν, as follows

fh
ν,k + fc

ν,k + fx
ν,k + δk1ff

ν = 0 for k = 1, 2, (2)

where δi j is the Kronecker delta, fh
ν,k is the hydrodynamic drag

force, fc
ν,k is the connector (spring) force and fx

ν,k are the bead–
bead, bead–swimmer and bead–wall excluded volume forces.
Notice that the force balance for bead 1 differs from the balance
on bead 2 by the presence of the flagellum force, ff

ν .
In our simulations, each bead will be treated as a point

particle. In this situation, the hydrodynamic drag force on a
bead k of swimmer ν is given by a generalization of Stokes’
law [20]:

fh
ν,k = −ζ (

vν,k − uν,k
)
, (3)

where ζ = 6πηa is the Stokes drag coefficient on a bead with
hydrodynamic radius a in a fluid with viscosity η, vν,k = ẋν,k
is the velocity of the bead, where xν,k is the position (Cartesian
coordinates) of the bead, and uν,k is the fluid velocity at
the bead position. There are two contributions to this fluid
velocity: the first is the motion driven by the forces exerted by
the other beads (and flagella) in the system, and the second is
the correction to the velocity experienced by the bead due to the
presence of confining walls. This correction leads for example
to the decrease in bead mobility found in a confining geometry.
Both of these contributions are determined simultaneously by
the methodology used here. Equations (3) and (2) give an
evolution equation for the bead positions as follows,

dxν,k
dt

= uν,k + 1

ζ

(
fc
ν,k + fx

ν,k + δ1kff
ν

)
. (4)

For Re = 0, the fluid velocity at a point x due to a
collection of point-forces is calculated by summing over all
forces times the Green’s function G for the Stokes equation for
the geometry and boundary conditions of interest. Considering
the beads of each of the N swimmers as point-forces and

including the disturbance due to the phantom flagellum, we
write the fluid velocity at a point x as

u(x) =
N∑

μ=1

2∑

l=1

G(x, xμ,l) ·
(−fh

μ,l − δl1ff
μ

)
, (5)

where the first term represents the direct hydrodynamic forces
exerted by the beads on the fluid and the second term represents
the disturbance caused by the phantom flagella. These two
contributions can be combined using the force balance on each
bead to become

u(x) =
N∑

μ=1

2∑

l=1

G(x, xμ,l) ·
(
fc
μ,l + fx

μ,l

)
. (6)

Similarly, the fluid velocity at the position of a bead k of
swimmer ν is calculated by excluding the singular part of the
fluid velocity generated by the bead:

uν,k =
N∑

μ=1

2∑

l=1

(G(xν,k, xμ,l)

− δνμδkl G∞(xν,k − xμ,l)) ·
(
fc
μ,l + fx

μ,l

)
. (7)

Here G∞ is the Oseen–Burgers or Stokeslet tensor, the free-
space point-force Green’s function for Stokes equation. It is
given explicitly as

G∞(x) = 1

8πηr

(
δ + xx

r 2

)
(8)

with r = |x| and δ the identity tensor. In an unbounded
domain, G and G∞ are identical so the ν = μ, k = l terms
in this expression are zero. In a bounded domain, however,
G contains a finite correction due to the change in the flow
induced by the boundaries; subtracting off G∞ when ν = μ,
k = l reveals this finite correction in the overall expression.
Substitution of equation (7) into the evolution equation for the
bead positions, equation (4), results in

dxν,k
dt

= 1

ζ

(
δ1kff

ν

) +
N∑

μ=1

2∑

l=1

M(ν,k)(μ,l) · (
fc
μ,l + fx

μ,l

)
. (9)

Here M(ν,k)(μ,l) is a 3 × 3 tensor which constitutes a block of
the (3 × 2N) × (3 × 2N) mobility tensor, M: [21]

M(ν,l)(μ,k) = δνμδkl
δ

ζ
+(G(xν,k, xμ,l)−δνμδkl G∞(xν,k−xμ,l)).

(10)
Equation (9) can be written in a compact form by introducing
3 × 2N dimensional vectors containing the coordinates and
forces of all beads as follows:

d

dt
R = 1

ζ
Ff + M · Fb, (11)

where R contains the coordinates of all beads, Ff is a vector
with the flagellum force, whose components are non-zero for
bead 1 of each swimmer, and Fb is a vector containing the total
non-hydrodynamic and non-flagellar forces on each bead.

The net force exerted by an isolated swimmer on the fluid
is zero—to leading order in the far field a neutrally buoyant
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swimmer is a force dipole. The present approach captures
this universal far-field behavior while neglecting the near-
field corrections to the hydrodynamic interactions between
swimmers, which are dependent on the details of the organism.
The validity of this approximation is supported by recent
simulation results [11]. Finally, we note that the limited set
of results we have obtained with multi-bead rod swimmers is
qualitatively consistent with those for the two-bead swimmers.

The fluid velocity M · Fb is calculated using the
general geometry Ewald-like method (GGEM) introduced by
Hernández-Ortiz et al [22]. A brief description of the GGEM
starts with considering the Stokes system of equations for a
flow driven by a distribution of 2N point-forces,

−∇ p(x)+ η∇2u(x) = −ρ(x) ∇ · u(x) = 0, (12)

where η is the fluid viscosity and the force density is ρ(x) =∑2N
ν=1 fνδ(x − xν). Here fν is the force exerted on the fluid at

point xν . The solution of (12), can be written in the form of (6)
and combined into the M · F product. If computed explicitly,
this product is a matrix–vector operation that requires O(N2)

calculations. GGEM determines the product implicitly for
any geometry (with appropriate boundary conditions) without
performing the matrix–vector manipulations. It starts with the
restatement of the force–density expression in (12), ρ(x) =
ρl(x) + ρg(x) using a smoothing function g, similar to
conventional particle-mesh methods. By linearity of the Stokes
equation, the fluid velocity is written as a sum of two parts,
the solution with each force–density separately. The ‘local
density’

ρl(x) =
2N∑

ν=1

fν[δ(x − xν)− g(x − xν)] (13)

drives a local velocity, ul(x), which is calculated assuming an
unbounded domain: ul(x) = ∑N

ν Gl(x − xν) · fν , where Gl(x)
is composed of the free-space Green’s function G∞ minus
a smoothed Stokeslet obtained from the solution of Stokes
equations with the forcing term modified by the smoothing
function g. For the Stokes equations we found that a modified
Gaussian smoothing function defined by

g(r) = (α3/π3/2)e(−α
2r2)(5/2 − α2r 2) (14)

yields a simple expression for Gl(x):

Gl(x) = 1

8πη

(
δ + xx

r 2

) erfc(αr)

r

− 1

8πη

(
δ − xx

r 2

) 2α

π1/2
e(−α

2r2). (15)

Because Gl(x) decays exponentially on the length scale α−1,
in practice the local velocity can be computed, as in normal
Ewald methods, by only considering near-neighbors to each
particle ν [23].

For the present work, the point-particle approximation is
not desired; in particular, as the concentration of particles
increases, the probability that particles will overlap, having
unphysical velocities, increases. To avoid this problem,
the bead hydrodynamic radius, a, can be used to define a

new smoothed-force density which will give a non-singular
velocity. This is achieved by replacing the Stokeslet by a
regularized Stokeslet, using the same modified Gaussian with
α replaced by ξ , with ξ ∼ a−1, yielding

GR
l (x) = 1

8πη

(
δ + xx

r 2

) [
erf(ξr)

r
− erf(αr)

r

]

+ 1

8πη

(
δ − xx

r 2

)(
2ξ

π1/2
e(−ξ

2r2) − 2α

π1/2
e(−α

2r2)

)
, (16)

where the superscript R stands for regularized force density.
For ξ−1 = 3a/

√
π , the maximum fluid velocity is equal to

that of a particle with radius a and the pair mobility remains
positive-definite [22, 24].

The global velocity, ug(x), is due to the force distribution
ρg(x), which is given by

ρg(x) =
2N∑

ν=1

fνg(x − xν). (17)

For a general domain, we find the solution to Stokes’ equation
numerically, requiring that ul+ug satisfy appropriate boundary
conditions. At a no-slip boundary we would require ug(x) =
−ul(x). For problems with periodic boundary conditions,
Fourier techniques can be used to guarantee the periodicity of
the global velocity ug. The periodicity on the local velocity,
ul, is obtained using the minimum image convention. In the
present case, the global contribution is calculated on a mesh
with M = M1 M2 M3 mesh points, with M1, M2, and M3 the
number of mesh points in the x1, x2, and x3 directions. A fast
Fourier transform (FFT) method is used in the two periodic
directions (x1 and x2) and a second order finite difference
method (FDM) scheme for the confined direction (x3). The
FFT is implemented using FFTW [25, 26], while the FDM is
solved with a regular LU decomposition routine [27].

For GGEM, the results should be independent of α but the
computational cost of the local and global calculations depend
on α. Therefore, we choose the optimal α which minimizes
the total computational cost. In the global calculation, to have
an accurate solution, the mesh size must be smaller than the
scale of the smoothing function, which is α−1. Therefore,
M1,2,3 ∼ α. The cost of the each LU decomposition scales
as M3

3 and there are M1 M2 number of them, giving a total
global cost that scales as α5. Note that the cost of each
FFT scales as M1 M2 ln(M1 M2) and there are M3 of them
giving a scaling of α3 ln(α). This is small compared to the
cost of the LU decomposition. In the local calculation, the
contribution of all pairs must be calculated that lie within a
neighbor list determined by the decay of the local Green’s
function. The local Green’s function decays over a distance
α−1, so the number of neighbors for each particle scales as
Nα−3. The calculation must be performed over all pairs, which
is the number of particles times the number of neighbors per
particle, resulting in a local calculation cost scaling of N2α−3.
Minimizing the total (local and global) computational cost with
respect to α gives an optimal α that scales as αopt ∼ N1/4 and a
total cost that scales as O(N5/4). If we had chosen a different,
linear, method for the FDM calculation, the global cost would
have scaled as α3, leading to an optimal value of αopt ∼ N1/3

and a total computational cost that scaled as O(N).
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For our slit geometry, we used for the periodic directions
a number of mesh points M1,2 = √

2αL while M3 = 4
√

2αH
for the confined direction. The previous analysis determined
how the optimal value of α changes with system size N .
However, to determine the value of the prefactor, and thus
the value of α used in the simulations, the cost of the global
and local contributions must be determined on the computers
used for the computation. For our machines, determining the
computational cost led to using αopt = 0.042N1/4.

3. Theory for dilute suspensions

As a starting point for understanding the dynamics of confined
suspensions of swimmers, we present here a scaling theory
valid in the dilute limit, in which the swimmers act almost
independently. We also show the fluid correlations for a
suspension of uncorrelated swimmers. These properties are
an important baseline in order to identify whether or not
an observed feature of a swimming suspension arises from
collective dynamics.

3.1. Diffusivity and velocity scaling

In the dilute limit, swimmers are mostly to be found in layers
near each wall [8]. The fundamental reason for this is simple—
a swimmer that is not near a wall is in all likelihood oriented
toward one wall or the other and will eventually collide with it.
Once it collides with a wall it remains there until a fluctuation
causes it to leave (in which case it will eventually hit the
other wall). We shall see that swimmer–wall hydrodynamic
interactions have a quantitative effect on the layering, but
not a qualitative one. Recent experiments with bacteria also
show a very high concentration at the walls [28]. Because
the formation of layers is a generic phenomenon, the present
theory focuses on the dynamics of swimmers in the layers.

In the absence of other swimmers, a swimmer will
continue in a straight line within the layer. Collisions or
hydrodynamic interactions with other swimmers cause the
direction of swimming to change, leading to diffusive motion at
long timescales. From a scaling perspective, consider a random
walk in which the particle swims at constant speed vs along a
trajectory for a mean duration τs before changing directions.
The motion at long times is diffusive with a diffusivity that
scales as Ds ∼ v2

s τs ∼ vsls, where ls = vsτs is the mean
free path. In a dilute system, the velocity of the swimmer is
essentially the isolated swimmer value, i.e. vs ∼ vis. (Changes
in swimming speed due to confinement do not affect the scaling
predictions.) Deviations from this at larger concentrations
will be discussed later. The mean free path scales as ls ∼
�2(σψe)

−1, where σ is a two-dimensional cross section (with
units of length) for the redirections. Therefore, the swimmer
diffusivity, Ds, will scale as

Ds ∼ (σψe)
−1, (18)

in dilute systems. Analysis for an unconfined domain [12]
yields a similar scaling but with a three-dimensional cross
section σ3D and the area fraction replaced by a volume fraction,
so Ds,3D ∼ (σ3Dφe)

−1.

We now turn to the fluid flow generated by the motion
of the swimmers, considering the behavior of passive, non-
Brownian tracers that follow the local fluid velocity. The
tracers undergo ballistic motion at short lag times and diffusive
motion at large lag times. The velocity of a tracer, vt, is the
fluid velocity at the location of the tracer xt, and is the sum of
the disturbance velocities due to each swimmer:

vt = u(xt) =
N∑

ν=i

ud
ν , (19)

where ud
ν is the disturbance at the position of the tracer due

to swimmer ν. We can calculate the mean-squared velocity of
the tracers by squaring this sum and performing an ensemble
average over all possible configurations of the swimmers while
the position of the tracer is held fixed at xt:

〈vt · vt〉xt
= 〈
v2

t

〉
xt

=
N∑

ν=1

N∑

μ=1

〈
ud
ν · ud

μ

〉
xt
, (20)

where the subscript xt denotes that the tracer is held fixed at xt

during the ensemble average over swimmers. The ensemble
average without such a subscript means an average over all
tracer positions has also been performed. In the dilute limit,
we assume the swimmers to be distributed independently.
This means that each swimmer is independently sampling a
probability distribution for location within the channel, though
that probability distribution need not be uniform. For example,
we consider here that distribution to be peaked in a layer near
each wall. The independence of the swimmers leads to

〈
v2

t

〉
xt

∼ N
〈(

ud
ν

)2
〉

xt

∼ φe ∼ ψe. (21)

The number of swimmers N is proportional to both the volume
fraction and the area fraction with a different proportionality
factor that depends on the channel height.

A similar scaling analysis can be used for the tracer
diffusivity, which can be written using the Green–Kubo
relation [29, 30]

Dt = 1
3

∫ ∞

0
〈vt(0) · vt(t)〉 dt . (22)

Again, we can replace the tracer velocity by a sum over
swimmer disturbances. Assuming independent swimmers in
the dilute limit gives

Dt ∼ N

3

∫ ∞

0

〈
ud
ν(0) · ud

ν(t)
〉
dt ∼ φe ∼ ψe. (23)

Combining the velocity and diffusivity scalings with the
definition of a correlation time, τt = Dt/〈v2

t 〉 gives a prediction
that τt is independent of volume fraction in the dilute limit.

We can also use this behavior of the tracers to understand
the correction to the swimmer behavior at finite concentration.
The tracers represent a characteristic fluid element in the
system. In addition to being self-propelled, each swimmer is
advected by the local fluid disturbance (generated by the other
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swimmers). If the fluid velocity does not change rapidly over
the size of a swimmer, then we can write

vs ≈ vis + vt(xs). (24)

Squaring this expression and neglecting the cross terms in the
dilute limit gives 〈

v2
s

〉 − v2
is ∼ 〈

v2
t

〉
. (25)

Note that there exists a proportionality factor because the
average over the fluid in the region occupied by the swimmers
is different than the average over the fluid in the whole
domain. The proportionality is replaced by an equality for an
unconfined system, for which these domains are the same [12].
Combining this result with the scaling of the tracer velocity
〈v2

t 〉 ∼ φe ∼ ψe gives that:

〈
v2

s

〉 − v2
is ∼ φe ∼ ψe. (26)

and similarly that

〈
v2

s

〉1/2 − vis ∼ φe ∼ ψe. (27)

3.2. Velocity fields and spatial correlations

An important measure of correlations in a suspension of
swimming micro-organisms is the spatial autocorrelation
function of the fluid velocity. We will report results for
correlations on planes of constant x3. The separation of
different fluid elements in this plane is denoted by x‖.
Therefore, the fluid correlation is Cf(x‖, x3) = 〈u(s‖, x3) ·
u(s‖+x‖, x3)〉, where the angle bracket represents an ensemble
average over swimmers and also an average over the tracer
position s‖ in the plane x3 = const.

A number of experimental studies [2, 3] have reported
the spatial correlation function for the swimmer velocities:
Cs(x‖, x3) = 〈vs(s‖, x3) · vs(s‖ + x‖, x3)〉. Assuming the
validity of the approximation given by equation (24), we can
write that

Cs(x‖, x3) = 〈
vis(s‖, x3) · vis(s‖ + x‖, x3)

〉

+ 2
〈
vis(s‖, x3) · u(s‖ + x‖, x3)

〉

+ Cf(x‖, x3). (28)

In the case of independent swimmers whose orientations are
uncorrelated with the fluid velocity, this expression reduces to

Cs(x‖, x3) = v2
isχ0(x‖)+ Cf(x‖, x3), (29)

where χ0(x‖) = 1 if x‖ = 0 and zero otherwise. This
expression indicates the close relationship between Cs and
Cf. In our simulations, Cf is substantially less susceptible to
statistical noise than Cs so that is the quantity we report.

The correlation function Cs has been used in experiments
and simulations to quantify the ‘swirls’ seen in the fluid [2, 3].
In particular, the existence of negative correlations has been
used as evidence for collective behavior and used to quantify
the size of the swirls. However, we will see here that negative
correlations can be present even in the absence of collective
behavior. The presence of the walls changes the disturbance

Figure 2. Streamlines of the fluid disturbance due to a force dipole
representing a pusher: at the middle of the channel (top row) and
close to the wall (bottom row). The fluid is shown in the x1–x2 plane
(left column) and the x1–x3 plane (right column).

that an organism produces in the fluid, and thus the correlations
in the fluid.

The spatial fluid correlations are determined by the fluid
disturbance caused by a single swimmer as well as correlations
between the swimmers. We consider here the correlations
present in the absence of correlations between the swimmers,
that is for independent swimmers. The correlation for
independent swimmers is determined solely by the disturbance
caused by a single swimmer and the concentration of
swimmers. Recall from figure 1 the disturbance that a single
swimmer produces in the fluid in the absence of walls, a pusher
expels fluid out from the front and back, while sucking in
fluid from the sides. However, the streamlines do not form
closed loops, or swirls. Contrast this with figure 2, which
shows the streamlines of the disturbance produced by a single
swimmer in the presence of walls. The walls induce swirls
in the flow. Two new length scales, the separation of the walls
and the separation of a swimmer from the walls, affect the fluid
structures.

The difference between these flow fields leads to different
fluid correlations. As we show below, the swirl in the fluid
induced by the wall means that even independent swimmers,
that have no collective behavior, will produce fluid correlations
that are negative. To illustrate this point, it is useful to visualize
snapshots of a typical velocity field generated by these
independent swimmers, as shown in figure 3. It is important
to note that these snapshots are simply a sum of disturbances
due to independent swimmers, each producing a disturbance
like that in figure 2. The snapshots look remarkably similar to
the results of simulations and experiments for which the swirls
were considered evidence of collective behavior.
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Figure 3. Snapshots of the velocity field for independent swimmers
in layers at φe = 0.1 (ψe = 0.375) with L = 15� and 2H = 5�.
(a) x3 = 0.8H�, (b) x3 = 0.5H� and (c) x3 = 0.

The autocorrelation function within a fluid for which there
are such swirls has a region of negative correlation, which is
shown in figure 4. The correlation function has been calculated
in two planes, the plane in which the swimmers form layers as
well as the center plane of the slit. By changing the amount
of confinement, we see that the length scale at which the
correlation becomes negative in the center of the slit is the
separation of the walls. However, the correlation near the
wall, in the plane of the swimmers, is independent of the
confinement. Instead, the length scale depends on the size of
a swimmer and the separation of the swimmers from the wall.

Figure 4. Fluid velocity autocorrelation function for independent
swimmers at 2H = 5� and 10�. The autocorrelation is normalized
by the corresponding value at |x‖| = 0. When x3 = H − �/2 the
curves for 2H = 5� and 10� are indistinguishable.

This is true for the cases shown because the second wall is far
enough away that its effect on the fluid correlation is small.

By examining theoretically the fluid correlations gener-
ated by uncorrelated swimmers, we have shown that collective
behavior is not necessary to generate swirls and negative
correlations in the fluid. This illustrates the importance
of comparing properties calculated from a suspension of
swimming organisms to that of independent organisms to
gauge the importance of collective behavior in producing the
observed response.

4. Computational results

The theory just described makes distinct predictions regarding
swimmer and tracer diffusivities, velocities, and fluid phase
correlations. In this section we directly compute these
quantities and others for suspensions over a range of
concentrations and degrees of confinement. For the remainder
of the article, all lengths are non-dimensionalized by the
swimmer size � and all times are non-dimensionalized by �/vis.

Let us start by fixing the confinement to five swimmer
sizes, 2H = 5, and the periodicity at three times the
confinement, L = 3 × 2H . We will show later that this
periodicity is large enough for the results to be independent
of L because the walls prevent formation of flow structures
larger than the confinement. In the dilute theory described
previously, it was assumed that the swimmers formed a layer at
each wall. The formation of layers close to the confining wall
in the simulations is illustrated in figure 5, which shows the
swimmer concentration profiles as functions of x3 at different
effective volume fractions. Results for both pushers and pullers
are shown, as well as for swimmers where hydrodynamic
effects are completely neglected. For very dilute systems,
the results in all cases are fairly similar—layers form near
each wall and there is a nearly zero concentration at small
distances from the walls due to steric exclusion of beads from
the walls. However, the structure within the layer does depend
on whether hydrodynamic interactions are included. With
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Figure 5. Concentration profile as a function of wall-normal position
x3 for different effective volume fractions with L = 15 and 2H = 5.
(a) Pushers, (b) pushers without hydrodynamic interactions and
(c) pullers.

hydrodynamic interactions, no long-range orientational order
is observed in the layer. Without hydrodynamic interactions,
a two-dimensional nematic state is observed, similar to the
three-dimensional nematic state observed in an unconfined
system without hydrodynamic interaction [12]. Once the
concentration is high enough that the layer close to the wall
is saturated, the swimmers form additional layers indicated by
the secondary peaks in the profiles at high concentrations.

Figure 6 shows the mean-squared displacement (MSD) in
the periodic (x1, x2) plane as a function of time, for swimmers
and fluid tracers, at two concentrations: φe = 0.1 (ψe =
0.375) and φe = 0.3 (ψe = 1.125). At short times,
the MSD is ballistic, reflecting the straight-line motions of
an isolated swimmer. The duration of this ballistic regime
decreases as the concentration increases. At longer times

Figure 6. Mean-squared displacement versus time for swimmers and
tracers at various concentrations with L = 15 and 2H = 5.

Figure 7. Diffusion coefficients as a function of the effective volume
fraction (top axis) and effective area fraction (bottom axis) for
swimmers and tracers with L = 15 and 2H = 5.

the behavior becomes diffusive. Since Brownian motion is
absent, the origin of this diffusive regime is the interactions
between the swimmers. Figure 7 shows the long-time diffusion
coefficients Ds and Dt as a function of the effective volume
fraction and area fraction. At low concentrations the swimmers
have a high effective diffusion coefficient reflecting the weak
hydrodynamic interactions between them. The flow is only
disturbed by a small number of swimmers so tracers diffuse
very slowly. As the concentration is increased the diffusivity
of the swimmers decreases, as the natural ballistic trajectories
are increasingly perturbed by hydrodynamic interactions and
collisions with other swimmers. Correspondingly, the naturally
motionless tracers feel the motion of increasingly more
swimmers and their diffusivity increases.

According to the results in figure 7, the diffusion
coefficient for both swimmers and tracers follow the dilute
theory scalings (Ds ∼ ψ−1

e , Dt ∼ ψe) developed in
section 3 even at moderate concentrations. Note the difference
in diffusivity and density profiles compared to our previous
work [8]. For the volume fractions shown in the present work,
we do not see the same dramatic increase in diffusivity and
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Figure 8. Mean-squared velocity for swimmers, 〈v2
s 〉 − 1, and

tracers, 〈v2
t 〉 as a function of the effective area fraction for L = 15

and 2H = 5.

shift in the density profiles to the center of the channel. These
differences seem to be due to the use of regularized forces in
the present work, versus point-forces in the former, and an
excluded volume potential as shown in figure 1. With this
excluded volume potential and swimmer aspect ratio, obtaining
much larger volume fractions is not possible because there is
a largest volume fraction corresponding to the close-packed
state.

From section 3, we saw that the diffusivities in figure 7 are
related to the typical velocities of the swimmers and tracers.
Figure 8 shows 〈v2

t 〉 and 〈v2
s 〉 − 1 as functions of ψe. Both

display an approximately linear increase with concentration,
as predicted by the simple theory. We believe the deviation
at small concentration is because of statistical errors due
to the small number of swimmers in the domain at small
concentrations. As with the diffusivities, the dilute scaling
seems to hold even at concentrations well above ψe = 0.1
for pushers. However, the puller simulations deviate from
the dilute scaling at ψe � 0.2. The cause for this difference
between pushers and pullers is unknown.

The final property we examine for this initial confinement
is the fluid flow generated by the swimmers. Figure 9 shows
snapshots of the fluid velocity field after more than 1000
dimensionless times in a plane near the wall of the channel
(x3 = 0.8H ) for different concentrations φe = 0.01, 0.1 and
0.3 (ψe = 0.0384, 0.375 and 1.125). These velocity fields are
similar to those observed in some experiments [2]. Snapshots
suggest that the size of the flow structures is related to the wall
separation 2H (as we will address later). We also examined
the snapshots for three different locations in the channel, x3 =
0, 0.5H , and 0.8H , which are shown in figure 10 for φe = 0.1
(ψe = 0.375).

We now turn to the effect of the degree of confinement
on the results. Simulations with a wider gap (2H = 10 and
L = 3×2H ) will be examined as well as a highly confined case
of 2H = 1, L = 20 × 2H , and with the swimmers restricted
to lie in the midplane of the channel—a monolayer. Figures 11
and 12 show the long-time diffusion coefficients Dt and Ds,

Figure 9. Snapshots of the velocity field at x3 = 0.8H
(x3 = H − 1/2) with L = 15 and 2H = 5. (a) φe = 0.01
(ψe = 0.0383) (b) φe = 0.1 (ψe = 0.375) (c) φe = 0.3 (ψe = 1.125).

the mean-squared swimmer velocity deviation 〈v2
s 〉 − 1, and

the mean-squared fluid velocity 〈v2
t 〉 for all three confinements.

The first observation is that all confinements follow the dilute
theory scalings at low concentrations. In particular, we see that
the swimmer diffusivities for 2H = 5 and 10 confinements
collapse reasonably well when the concentration is represented
as an effective area fraction. This supports the simple theory
that assumes the swimmers form a layer next to each wall in the
dilute limit. The swimmer diffusivities in the monolayer have
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Figure 10. Snapshots of the velocity field for φe = 0.1 (ψe = 0.375)
with L = 15 and 2H = 5. (a) x3 = 0.8H (x3 = H − 1/2),
(b) x3 = 0.5H and (c) x3 = 0.

the same scaling, though a different prefactor. This difference
is most likely due to either a difference in the hydrodynamic
interactions between swimmers in the monolayer because of
the nearby walls or the inability of the swimmers to escape
from the layer.

The tracer diffusivities, while following the simple scaling
with area fraction, do not collapse with ψe with changing
confinement. Because the tracers are not restricted to planes
near the walls, at weak confinement (large H ) the tracers can
sample the lower velocities in the center of the channel, away

Figure 11. Diffusion coefficients versus effective area fraction for
swimmers and tracers for different confinements. For 2H = 5 and 10
we used L = 3 × 2H , while for the monolayer 2H = 1 we used
L = 20 × 2H .

Figure 12. Mean-squared velocity for swimmers, 〈v2
s 〉 − 1, and

tracers, 〈v2
t 〉 versus effective area fraction. For 2H = 5 and 10 we

used L = 3 × 2H , while for the monolayer 2H = 1 we used
L = 20 × 2H .

from the swimmer layers near the walls. This difference results
in a lower velocity of tracers with weaker confinement, as seen
in figure 12.

From the earlier theoretical analysis, we found that
uncorrelated swimmers produce swirls in the fluid, resulting
in negative fluid correlations. The size of these negative
regions were related to the separation of the walls, the size
of a swimmer, and the separation of a swimmer from a wall.
We found in the simulations swirls in the fluid as shown in
figures 9 and 10. To make a quantitative comparison between
the simulations and the theory of uncorrelated swimmers, we
compare the fluid autocorrelation functions in planes parallel
to the slit. Figure 13 shows the velocity autocorrelation
function at two x3-planes, x3 = 0.0 and 0.8H , for 2H = 5
and 10, both with L = 3 × 2H and φe = 0.05. These
results indicate, as foreshadowed by the velocity fields, that
the scale of the velocity autocorrelation is set by the distance
between the walls. The fluid velocities are correlated at
short length scales and, before they become decorrelated,
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Figure 13. Fluid velocity autocorrelation function at φe = 0.05.
(a) 2H = 5 (ψe = 0.19) and (b) 2H = 10 (ψe = 0.37).

there is an anticorrelation. While these types of negative
correlations might be attributed to swirls caused by collective
behavior, it is necessary to show an explicit comparison
with the uncorrelated swimmer response because independent
swimmers can produce negative correlations due to the change
in hydrodynamics caused by the wall. Figure 13 shows
such a comparison. First consider the comparison between
curves in the plane x3 = 0.8H . We see that the full
simulation correlations are similar to the independent swimmer
calculation. The difference between the curves in slightly
larger in the plane x3 = 0. Recall that the independent
swimmers are all placed at the walls, which produce fluid
correlations in the center of the channel. The full simulations
however also have some swimmers in the center of the channel.
This additional contribution from the swimmers in the center
may be sufficient to account for the difference.

We now return to the issue of system size effects and our
choice of L in the periodic directions. In order to explore
the system size effects on the results, the confinement of
2H = 5 was kept constant while the periodicity of the box
was increased from L = 3 × 2H to 4 × 2H, 5 × 2H, 6 ×
2H and 12 × 2H . Underhill et al [12] found that the
tracer diffusivity in a three-dimensional periodic unconfined
system has a dependence on system size. Because the tracer
diffusivity in the unconfined system had a stronger system size
dependence than the swimmer diffusivity and the velocities,
we show in figure 14 the system size dependence of the tracer
diffusion coefficient in the confined domain. No system size

Figure 14. System size dependence of the tracer (fluid) diffusion
coefficient at three effective volume fractions.

Figure 15. Fluid velocity autocorrelation function for 2H = 5 at
φe = 0.05 (ψe = 0.19) as a function of the system size. (a) x3 = 0
and (b) x3 = 0.8H (x3 = H − 1/2).

dependence is observed. We also did not observe any system
size dependence of the swimmer diffusivity or swimmer and
tracer velocities. This explicitly justifies our use of L = 3×2H
in the data presented earlier.

Finally, figure 15 illustrates the velocity autocorrelation at
2H = 5 for three system sizes L = 3 × 2H, 6 × 2H and
12 × 2H . The curves have a slight change with system size
at small separations, though they seem to converge quickly
with increasing system size. Clearly, the lack of changes
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with a system size in the confined system compared to the
unconfined system is due to the introduction of an additional
length scale once the system is confined. This is not surprising
because the confinement restricts flow structures larger than
the confinement and modifies the hydrodynamic interactions
between swimmers. If the collective behavior seen in the
unconfined simulations is due to the long-range nature of the
hydrodynamic interactions, screening of these interactions by
the walls may affect the collective structures formed. The
effect of hydrodynamic screening on the dynamics of polymers
has been studied in detail [20, 31, 32]. In the polymer literature,
it is the rate of decay of the fluid disturbance with distance (as
well as the rotational symmetry) that determines if screening is
present or not. At large enough distance from a swimmer in the
confined domain, the velocity disturbance decays as r−3. It is
not clear if this decay is responsible for the results seen here—
that the fluid structures do not depend on system size provided
the periodicity is larger than the scale of confinement.

5. Conclusions

Simulations and theoretical analysis were used to study the
dynamics of confined suspensions of self-propelled particles.
The swimmers interact with one another via an excluded
volume potential and hydrodynamic interactions through the
fluid. These hydrodynamic interactions are altered by the
confining walls.

We developed a simple theory of the motion of swimmers
and tracers which captures the scalings of the diffusivity and
velocities from the simulations. The theory assumes that
in the dilute limit the swimmers form layers near the walls
and execute a two-dimensional random walk within the layer.
The theory also shows that even independent swimmers, with
no collective behavior, can produce spatial fluid correlations
in a confined domain that do not appear in an unconfined
domain. This is particularly important because swirls in the
fluid and negative correlations have been cited in previous
studies as evidence of collective behavior. Using this theory,
we were able to better understand how the scale of these
negative correlations in the simulations change with the degree
of confinement. In particular, the negative correlations in
the center of the slit are governed by the separation of
the walls, while the negative correlations near the walls are
governed by the size of a swimmer and the separation of the
swimmer from the wall. This is important for understanding
experimental observations of swimming suspensions because
many experiments are performed in the presence of walls.
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